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Separation of a supersonic boundary layer near a compression ramp is considered in
the limit of large Reynolds numbers and for Mach numbers O(1). When the ramp
angle is small, the motion may be described by the well-known triple-deck theory
describing viscous–inviscid interactions. For small values of the scaled ramp angle,
steady stable solutions can be obtained. However, it is shown that when a recirculation
zone is present and the ramp angle is sufficiently large, the flow in the recirculation
zone is susceptible to convective instabilities when perturbations are introduced there.
At still larger values of the scaled ramp angle, an absolute instability is shown to
occur that leads to a violent local breakdown of the boundary layer. The calculated
results are shown to be consistent with a theoretical criterion that is the necessary
and sufficient condition for the onset of instability.

1. Introduction
The classical problem of supersonic boundary-layer flow past a compression ramp

has been studied by various authors for more than four decades. In most situations
where a solid surface turns toward the flow, a compressive disturbance is induced
that gives rise to a viscous–inviscid interaction between the boundary layer and the
supersonic external flow. A similar interaction occurs when a shock wave impinges
on a boundary layer on a wall. In both situations, a pocket of recirculating flow
was observed in several early experimental investigations (Liepmann 1946; Ackeret,
Feldmann & Rott 1947; Chapman, Kuehn & Larson 1957) in a phenomenon classi-
cally described as separation; the recirculation zones were seen to penetrate upstream
of the compressive feature (i.e. either an incident shock wave or the corner point
of the compression ramp). This behaviour was initially perplexing because the
classical boundary-layer equations, with prescribed external pressure gradient, are
parabolic and do not permit the propagation of disturbances upstream. The theoretical
explanation for the observed phenomena was supplied by the supersonic triple-deck
theory of Stewartson & Williams (1969) and Neiland (1969), who showed that once
a compressive disturbance is sufficiently large, nonlinear effects in the boundary layer
near the wall will give rise to boundary-layer separation. As a consequence, the induced
displacement thickness can act to alter the external flow by inducing a pressure rise
ahead of the point of separation, which in turn causes the boundary layer to separate
further upstream. This mechanism of upstream influence is now well-understood

† David Walker died on 21 March 2004.
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in supersonic boundary layers and extensive reviews exist (e.g. Stewartson 1974;
Neiland 1981; Messiter 1983).

Over the years, a number of numerical solutions of the supersonic triple-deck
equations have been produced for situations where the ramp angle is small and
O(Re−1/4), where Re is the Reynolds number. Rizzetta, Burggraf & Jenson (1978)
and Ruban (1978) showed that once the scaled ramp angle exceeds a certain minimum
value, a zone of backflow develops near the corner of the ramp, which spreads in
both the upstream and downstream directions as the ramp angle is progressively
increased; with increasing ramp angle, it becomes more difficult to produce accurate
numerical solutions. The solutions for higher angles clearly show a pressure rise
upstream of the corner, followed by a pressure plateau of almost constant pressure
near the recirculation zone. Finally a steep pressure rise develops as reattachment
occurs and the pressure attains the downstream value. The shear stress on the other
hand becomes negative upstream of the corner, plateaus and then increases slightly
to a local maximum before falling sharply to an absolute minimum at a location
on the ramp. A subsequent and relatively slower rise in the wall shear occurs in the
downstream direction. The region where the wall shear falls sharply to a minimum
and then increases will be referred to as the wall shear trough.

With increasing ramp angle, the minimum in the wall shear becomes progressively
more negative. In addition, the local maximum in wall shear does eventually become
positive indicating the evolution of secondary separation zones within a primary
recirculation bubble. Smith & Khorrami (1991) obtained numerical solutions for
relatively large scaled angles and argued on the basis of their solutions that a critical
angle exists for which the pressure gradient and wall shear develop a singularity.
The implication of this hypothesis is that there exists a critical angle above which
the triple-deck formulation fails. Recently Korolev, Gajjar & Ruban (2002) have
obtained very accurate solutions of the triple-deck equations for the steady problem
using two independent numerical methods and very small mesh sizes; they were
able to extend their results to large scaled angles without serious complication and
excellent agreement was obtained with a reattachment theory due to Neiland (1970). It
was shown that the minimal skin friction in the separation region becomes very large
and negative immediately upstream of reattachment as the ramp angle is increased.
Furthermore a complex structure develops in the corner region with the primary
recirculation zone bifurcating into secondary and then tertiary bubbles. These results
do not support the existence of a singularity at finite angle discussed by Smith &
Khorrami (1991) and suggest that the steady triple-deck formulation can be extended
to high ramp angles, albeit with increasing difficulty.

Although the steady compression ramp problem is of considerable interest, a
question which naturally arises concerns the degree to which these steady solutions
are stable to small disturbances. This issue is important because it appears that
‘short’ separation bubbles, like those observed near compression corners, are observed
to apparently break up in experiments, once the ramp angle is sufficiently large,
leading to transition to turbulence and a thick turbulent boundary layer on the
downstream portion of the ramp. The work of Chapman et al. (1957) established
that transitional flow was clearly associated with the bubble and specifically the
reattachment zone downstream of the corner. The fine details of the bubble break up
are difficult to observe in unsteady supersonic flow but an analogous phenomenon
occurs in dynamic stall, for example. As an airfoil is brought to incidence in a uniform
stream, a ‘short’ separation bubble appears on the upper surface at a certain critical
angle of attack (see, for example, Degani, Li & Walker 1996). The bubble is then
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observed to break up with a further increase in angle of attack, leading directly to
transition and a turbulent boundary layer on the upper surface of the airfoil (see, for
example, Sychev et al. 1998, and the references therein). In both situations, an increase
in the controlling parameter leads to local breakdown of the laminar boundary
layer.

Cassel, Ruban & Walker (1995) carried out a series of calculations for progressively
higher ramp angles using a time-marching algorithm to solve the unsteady triple-deck
equations, starting from an initial configuration where the ramp angle was abruptly
changed from zero. The original objective of these computations was to carry the
solutions through to a presumed steady state and this was accomplished without
complication for relatively low ramp angles. However at a very moderate angle (well
below the maximum values considered by Smith & Khorrami 1991 and Korolev et al.
2002) an apparent absolute instability,† was encountered which precluded carrying out
solutions to higher ramp angles. At the time Cassel et al. (1995) went to considerable
effort to attempt to confirm that the observed instability was physical, as opposed
to numerical in nature. The oscillations that were observed in the wall shear and
pressure appeared for all grids considered. The observed instability appeared in the
form of a wave packet but because the oscillations were always point-to-point in
the grid, it was judged that the computations could not be continued farther in time
with good accuracy. All attempts to do so, however, appeared to indicate that once
the wave packet had formed, the amplitude of the oscillations did not increase with
time. Similar behaviour had been previously observed by Tutty & Cowley (1986)
who calculated the flow over a small bump using a zero displacement interaction
law. The onset of the instability seemed to be associated with the first evolution of a
point of inflection in some of the velocity profiles in the backflow zone that appeared
once the ramp angle exceeded a certain critical value. However the reasoning was
speculative and somewhat unsatisfactory, since it did not prove possible to correlate
the onset of instability (see also Cassel 1993) with a necessary and sufficient condition
for instability described previously by Tutty & Cowley (1986).

Suppose that u0(x, y, t) denotes the solution for the streamwise velocity in the
lower deck of the triple-deck structure, where x and y are the scaled streamwise and
normal coordinates and t is the scaled time in the lower deck. Tutty & Cowley (1986)
considered small perturbations about this solution of the form

u(x, y, t) =u0(x, y, t) + δeik(x−ct)u1(x, y, t) + . . . , (1.1)

with similar expressions for the normal velocity v(x, y, t), the displacement function
A(x, t) and the pressure p(x, t). Here δ � 1 is the disturbance amplitude, the wave
number k is real and the complex wave speed c = cr +ici . The situation considered was
for k � 1, corresponding to a possible inviscid instability having short wavelengths
(compared to the interaction length scales). Tutty & Cowley (1986) refer to such
modes as long-wave Rayleigh modes since they have wavelengths that are large with
respect to the boundary-layer thickness. The analysis leads to an eigenrelation of the
form

J (x, t, c) =

∫ ∞

0

dy

{u0(x, y, t) − c}2
= 0, (1.2)

† An absolute instability is one which grows locally and can propagate upstream but is not
convected away downstream (see, for example, Huerre & Monkewitz 1985).
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which serves to determine the complex wave speed c(x, t) for a given streamwise
profile u0 at any time t; note that u0 → ∞ as y → ∞. The flow is unstable with
respect to small disturbances if ci > 0 at a given streamwise station. As discussed by
Tutty & Cowley (1986), Rayleigh’s inflection point theorem and Fjørtoft’s theorem are
necessary conditions for instability but the condition (1.2) is necessary and sufficient
when ci > 0. Tutty & Cowley (1986) calculated the eigenvalues c for interactive flows
over a bump with one type of interaction law (a zero displacement law) and were
able to demonstrate that when a curve of positive ci was evaluated, the evolution of
a wave packet was observed. It proved difficult to find a consistent pattern in the
results for other interactive laws (S. J. Cowley, private communication). Similar incon-
clusive results for compression ramp flow were found by Cassel (1993) and Cassel et al.
(1995), although the calculated time-dependent results clearly showed the evolution of
an instability at sufficiently high ramp angle. At the time, the reason for this apparent
inconsistency was not clear.

In the original work of Cassel et al. (1995), it was believed that the most important
location to concentrate the grid in the streamwise direction was at the ramp corner
and a typical fine mesh computation involved a total of 301 points in the streamwise
direction. Recently more capable computers have facilitated similar calculations but at
much smaller streamwise grid sizes. In the present study, the computations of Cassel
et al. (1995) were repeated but with much more mesh points. It was then discovered
that the instabilities evolved earlier when the smaller mesh sizes were used (with up to
3201 points in the streamwise direction). The streamwise meshes used here were found
to be small enough to accurately resolve the details of the developing instability. In
addition, it was determined that an instability actually develops first in the region of
minimal skin friction on the ramp, as opposed to the corner region. As the ramp angle
is increased above a first critical angle, a parameter range is encountered where the
recirculating flow region in the corner is convectively unstable but the region outside
is not. In other words, small perturbations introduced in the recirculating flow grow
with time and convect away from the point of disturbance; eventually the growing
disturbance is processed by the reattachment zone and is damped out. On the other
hand, a disturbance introduced outside the recirculation zone does not grow with
time and is simply convected away, provided the initial disturbance amplitude is not
too large. In addition, at any streamwise location in the reversed flow region, there
appears to be a threshold amplitude, above which the oscillations become unbounded
before the disturbance can escape from the recirculation zone.

As the ramp angle is increased to still higher values, a second critical value is reached
where instabilities develop in the reversed flow region and slowly but spontaneously
grow to relatively large values; at a third and larger critical angle, the disturbance
grows to unbounded values leading to local breakdown. Both phenomena are absolute
instabilities. This type of evolution seems consistent with other occurrences of abso-
lute instabilities (see, for example, Huerre & Monkewitz 1985, 1990) where a convective
instability first appears as the controlling parameter is increased and then is followed
by the occurrence of absolute instability. Consistent patterns in computed positive
values of the eigenvalues c began to emerge when the integral in equation (1.2) was
evaluated at each streamwise station, but only when the streamwise mesh was suffi-
ciently refined well beyond those employed by Cassel et al. (1995); these results
confirm that the evolution of instabilities in the numerical simulations is a physical
phenomenon, as opposed to a numerical instability. Finally it is shown that the
predicted growth rates associated with c are roughly consistent with those observed
in the computations.
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2. Governing equations
Consider the flow of an ideal compressible gas with constant specific heat ratio γ

past a compression ramp. The flow passes at zero incidence over a flat surface, that
has a sharp leading edge at x ′ = 0, and is subsequently deflected through a positive
angle α′ onto a second flat surface at x ′ = L. The compression ramp geometry is then
of the general form

f
′

0 =

{
α′(x ′ − L), x ′ >L

0, x ′ � L
(2.1)

where α′ denotes the ramp angle. The supersonic external flow approaching the corner
has speed U∞, density ρ∞ and temperature T∞. Let µ0 denote a reference viscosity
based on a reference enthalpy of U 2

∞ and assume that the viscosity is a function of

temperature alone given by the power law µ′/µ0 =
(
h′/U 2

∞
)n

, where n is a known
constant; here and in the following a prime denotes a dimensional quantity. The
Reynolds number and Mach number for the flow are defined by

Re0 =
ρ∞U∞L

µ0

, M∞ = U∞

(
γp∞

ρ∞

)−1/2

, (2.2)

respectively. The Reynolds number is assumed large while the Mach number is O(1)
for supersonic flow.

Typically, a shock wave is generated at the corner in supersonic flow, and this
feature gives rise to an inviscid–viscous interaction with the boundary layer on the
wall, which can be calculated using triple-deck theory when the ramp angle is small.
The supersonic boundary layer approaching the compression corner has a thickness
O(Re

−1/2
0 ) and suppose that (u′, v′) denote the flow velocities in the streamwise x ′-

and normal y ′-directions, respectively. Near the wall and upstream of the interaction
region u′ ∼ λY as Y =L−1Re

1/2
0 y ′ → 0; here Y is the scaled boundary-layer variable

and λ is a known constant associated with the wall shear just upstream of the corner.
If the ramp angle α′ is gradually increased from zero, a significant interaction with
the external flow occurs when α′ = O(Re

−1/4
0 ). The interaction region is a three-

layer structure having streamwise extent O(Re
−3/8
0 ) centred on the corner with (a)

a lower deck having normal thickness O(Re
−5/8
0 ), (b) a middle deck that is the

continuation of the upstream boundary layer and has thickness O(Re
−1/2
0 ) and (c)

an upper deck describing an inviscid region above the boundary layer with thickness
O(Re

−3/8
0 ).

Defining the O(1) parameter β = (M2
∞ − 1)1/2, the appropriate dimensionless scaled

variables in the lower deck are

x ′

L
= 1 +

β−3/4λ−5/4

µ
1/4
w ρ

1/2
w

Re
−3/8
0 x, t ′ =

L

U∞

β−1/2

µ
1/2
w λ3/2

Re
−1/4
0 t, (2.3)

u′

U∞
=

λ1/4µ1/4
w

β1/4ρ
1/2
w

Re
−1/8
0 u + . . . ,

p′ − p∞

ρ∞U 2
∞

=
λ1/2µw

β1/2
Re

−1/4
0 p + . . . , (2.4)

y ′

L
=

β−1/4µ1/4
w

λ3/4ρ
1/2
w

Re
−5/8
0 {y − f0(x)}, f ′

0

L
=

β−1/4µ1/4
w

λ3/4ρ
1/2
w

Re
−5/8
0 f0, (2.5)

v′

U∞
=

β1/4λ3/4

µ
−3/4
w ρ

1/2
w

Re
−3/8
0

{
v − u

df0

dx

}
, α′ =

µ1/2
w β1/2

λ−1/2
Re

−1/4
0 , (2.6)

ρ ′ = ρ∞ρw + . . . , µ′ = µ0µw + . . . , h′ = U 2
∞gw + . . . . (2.7)
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Note that a Prandtl transposition has been incorporated in equations (2.5) and (2.6)
and that a subscript w denotes a quantity evaluated at the wall. Substitution of these
expansions into the Navier–Stokes equations yields the lower-deck equations in the
limit Re0 → ∞:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

∂2u

∂u2
,

∂u

∂x
+

∂v

∂y
= 0, (2.8)

with boundary conditions

u = v =0 at y = 0, u ∼ y + A(x, t) as y → ∞ for all x, (2.9)

u ∼ y as x → ± ∞ for all y, (2.10)

and the Ackeret interaction law

p = −∂A

∂x
+

df0

dx
. (2.11)

Here A(x, t) and p(x, t) are the displacement function and pressure, which are to be
determined subject to the requirement that both must vanish as x → ± ∞. In the
subsequent numerical solutions, it is convenient to use a compression ramp of slightly
modified geometry (as opposed to equation (2.1)) to avoid possible numerical com-
plications with an abrupt change in slope; let

f0(x) = 1
2
α(x +

√
x2 + r2), (2.12)

which is used throughout with the rounding parameter taken to be r = 0.5. Other
values of r were considered (see also Cassel et al. 1995) but results are similar for
small values of r .

The error in the triple-deck formulation is O(Re−1/8) but a lower bound to some level
of accuracy relative to solutions of the Navier–Stokes equations cannot be established.
However, numerical solutions carried out with both formulations (Burggraf et al. 1979)
show good agreement with each other, and also experiment down to a Reynolds
number of 7 × 104.

It is convenient to recast the interaction problem in terms of the scaled shear stress
τ = ∂u/∂y. Differentiation of the first of equations (2.8) with respect to y eliminates
the pressure and leads to the system

∂τ

∂t
+ u

∂τ

∂x
+ v

∂τ

∂y
=

∂2τ

∂y2
,

∂2ψ

∂y2
= τ, (2.13)

where the stream function ψ is defined by u = ∂ψ/∂y, v = −∂ψ/∂x. The boundary
conditions for τ and ψ follow from equations (2.8)–(2.10) and

ψ =
∂ψ

∂y
= 0,

∂τ

∂y
=

∂p

∂x
at y =0, (2.14)

τ → 1 as x → ± ∞ or as y → ∞. (2.15)

The displacement function A(x, t) may be eliminated from the formulation using

A(x, t) = lim
y→∞

{u − y} =

∫ ∞

0

(τ − 1) dy, (2.16)
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and differentiating the interaction law (2.11) with respect to x, it follows that

∂τ

∂y

∣∣∣∣
y =0

= − ∂2

∂x2

(∫ ∞

0

(τ − 1) dy

)
+

d2f0

dx2
. (2.17)

Lastly, it is convenient for numerical solutions to transform the region −∞ <x < ∞,
0 � y < ∞ into a finite rectangular domain through the affine transformations

x̂ =
2

π
arctan

(
x − x0

a

)
, ŷ =

2

π
arctan

(
y

b

)
, (2.18)

where a and b are parameters which control the level of grid packing in physical space
and x0 is a streamwise location about which mesh clustering is desired. Smaller values
of a and b imply more grid points near x0 and y = 0, respectively. It is anticipated (see,
for example, Cassel et al. 1995) that the flow in the lower deck in the vicinity of the
ramp corner may exhibit a complex structure, and here higher resolution is required
as opposed to the linear shear flow that occurs as x → ±∞. Another advantage of the
transformations (2.15) is that the need to truncate the solution domain at some large
values of |x| or y is eliminated; the domain is defined by −1 � x̂ � 1 and 0 � ŷ < 1.
The transformation rules are

∂

∂x
=

	(x̂)

a

∂

∂x̂
,

∂

∂y
=

	(ŷ)

b

∂

∂ŷ
, (2.19)

where 	(z) = 1/π {1 + cos(πz)} .

3. Numerical methods
The numerical method used to solve the system of equations (2.13) to (2.17) is

described by Cassel et al. (1995); it is first-order accurate in time and second-order
accurate in the approximations to the spatial derivatives. The solution was started
from the flat-plate solution u = y at t = 0 when the ramp angle is abruptly increased
to the desired value. The solutions were then integrated forward in time until either a
steady-state was reached or a flow instability was encountered. The condition used to
determine whether a steady-state solution had been achieved was that the difference
between the wall shear τ (x̂, 0) at the current time and the previous time divided by
the time step 
t must be less than 5 × 10−4 at each point in the mesh; the quantity
tested approximates the time derivative of τ (x̂, 0) and for those cases which reach a
steady state, a monotonic decrease was observed at each point. For those situations
where oscillations develop, the time derivative is initially monotonically decreasing at
each x̂ but, at a time referred to as td , it stared to increase dramatically.

The first-order time differencing employed places a restriction on 
t in order that
the numerical algorithm remains stable; this can be estimated from a Von Neumann
analysis (Ruban 1978; Cassel 1993) as


t �
πa
x̂

4 |umax| . (3.1)

The maximum velocity occurs at the edge of the inner deck where u ∼ y. The outer
computational boundary was typically taken at ymax = 60, although calculations were
also run for ymax = 100 and ymax = 150 to ensure that the location of the outer
boundary did not have a significant effect on the computed results. Many of the
reported results were run with a mesh concentration parameter a = 5 and with 801
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mesh points in the streamwise direction and in this case the time-step restriction is

t � 1.64 × 10−4. For most such computations a time step of 1.25 × 10−4 was used;
time steps equal to one half and one quarter this value were also used as a check on
the accuracy, as well as on the stability of the numerical algorithm.

The calculations carried out by Cassel et al. (1995) at the higher ramp angles
considered and at the smallest mesh sizes used were done with 301 and 151 points
in the streamwise and normal directions with a = 10 and b = 5, respectively, and
showed the evolution of a wave packet near the corner point at the end of the shear
stress plateau near the local maximum in τ (x̂, 0). In the present calculations, it was
observed that when the number of points in the streamwise direction was increased
to 801, oscillations started at an earlier time farther downstream near the wall shear
minimum and along the pressure rise upstream of reattachment. The computations
were then rerun with the concentration point shifted from zero to x0 = 5 (that is
near the wall shear minimum); in addition the mesh concentration parameters were
reduced to a = b = 5 in order to obtain better resolution in the zone where the wall
shear falls sharply from the local maximum to the minimum. Various values of a and b

were used as a check on the results and the present values appear to be a reasonable
compromise between good resolution near the minimum, while retaining adequate
mesh points in the rest of physical space; for example, a value of a =2.5 was judged to
produce an undesirable skewed mesh distribution. Computational experience showed
that the details of the developing instability could only be seen through grid refinement
in the streamwise direction. For example a computation with a (401, 151) grid and
with x0 = 5 for α =4 showed barely visible but persistent oscillations in the wall
shear trough so that a steady state was never achieved. However, the same case
carried out on a (801, 151) mesh revealed the formation of an absolute instability,
where significant growth and unsteady oscillations O(1) eventually occurred. Unless
otherwise noted the results subsequently given here will be based on a (801, 151)
grid. Note that the computational task is significant for this grid and the time step
employed, with a typical computation requiring on the order of a day to complete
on a workstation. Note also that in some cases the number of streamwise points was
increased to 1601 and 3201 as a check that the computed solutions were indeed grid
independent. For the instabilities reported here the normal mesh spacing with 151
points appears to be adequate, since computations were also run with 301 and 601
points but no discernible change in the results was seen.

4. The absolute instability
In the instability observed by Cassel et al. (1995), a wave packet was observed to

form and persist at an essentially fixed location. Calculated results for this case are
shown in figure 1(a) for the case α =4 with a (301, 151) mesh and the same com-
putational parameters employed by Cassel et al. (1995). This pattern evolves in the
wall shear stress and pressure around t = 85 and although there is an oscillation back
and forth within an envelope, the behaviour is essentially quasi-steady. In figure 1(a)
the mesh is shown in the inset along with a magnified view of the internal structure.
Clearly with this streamwise mesh the oscillation is barely resolved. However, the
computation can be continued well beyond this stage without additional growth of
the wave packet.

When the streamwise mesh was refined and the concentration point moved down-
stream to x0 = 5 a different and less regular disturbance appears at an earlier time
around t = 80 in the wall shear trough. The pattern shown in figure 1(b) is at a
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Figure 1. Comparison of the evolving disturbance on coarse and refined meshes for α = 4:
(a) apparent wave packet formed on (301,151) mesh with a =10, x0 = 0; (b) the new disturbance
on a (810,151) mesh with a = 5, x0 = 0.

particular time when it has grown to a certain level of amplitude. With the passage
of time the pattern oscillates back and forth from a location upstream of the minimal
wall shear to the reattachment point. The streamwise location of maximum amplitude
changes with time but, by and large, the average amplitude of the disturbance does
not change. A magnified portion of the oscillation is shown in the inset to figure 1(b)
from which it may be inferred that the disturbance is well-resolved. The same type of
behaviour was observed when the number of streamwise mesh points was increased to
1601. Because the new form of the instability develops at an earlier time, it supercedes
the more regular wave packet calculated by Cassel et al. (1995) which is then not
observed on the finer spatial mesh.

Cassel et al. (1995) found that a wave packet first appeared on a coarser mesh at the
corner for α ≈ 3.9. It has been determined here that, on a refined spatial mesh, small
but visible persistent oscillations appear near the point of minimal wall shear for α

as low as 3.7; note that this value and (and a subsequent critical value of α = 4.2)
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Figure 2. Temporal development of the instability for α =4.2. The oscillations appear
around t = 60 but do not become unbounded until around t =158.

are approximate and might shift slightly depending on further grid refinement. For
α < 4.2, the oscillations in the wall shear trough remain bounded for all time but for
all α � 4.2, the instability was observed to grow spontaneously and without bound.
Calculated results for the case α = 4.2 are shown in figure 2 where the insets show
magnified pictures of the oscillations along with the grid points. At t = 60 the onset of
small oscillations may be seen downstream of the minimal shear point. The average
amplitude of the disturbance grows rather slowly with time as the oscillation sloshes
back and forth in the wall shear trough and by t = 140, it is still O(1). Shortly
thereafter the disturbance enters a period of explosive growth and by t =158 the
maximum amplitudes have grown through three orders of magnitude; note however
that even at this stage the grid spacing is still reasonable. Since the instability that
develops here does so at an essentially fixed streamwise location, it is an absolute
instability.

It may be observed from figures 1 and 2 that the present disturbance exhibits oscil-
lations of substantially higher frequency than the wave packet form of Cassel et al.
(1995). The need for a sufficiently refined mesh has been pointed out by Tutty &
Cowley (1986) in order for some instabilities to appear and here the higher-order
modes have only been revealed by using smaller streamwise mesh sizes. In the present
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Imax a x0 
xx∼−11 
xx=0 
xx∼5

301 10 0 0.23 0.1 0.13
801 5 0 0.12 0.02 0.04

1601 5 5 0.11 0.02 0.01

Table 1. Comparison of three different mesh spacings at key streamwise locations for α =4
(the separation point, the ramp corner and near the downstream oscillations).

study, care was taken to ensure that the mesh sizes used near x = 0 were at least as
small as those employed by Cassel et al. (1995) and a comparison of some mesh sizes
at certain streamwise locations that were used in the present and previous studies is
presented in table 1.

5. Convective instabilities
In the course of the numerical work, each case considered was evaluated on a

sequence of finer meshes in order to ascertain grid independence. In order to reduce the
overall amount of computational time for those solutions that reached an apparently
steady state, calculations were started on a fine mesh by interpolating the preceding
coarser mesh solution. This was done using a standard cubic spline technique (see,
for example, Press et al. 1992). This procedure reduced the computational times sub-
stantially and a steady state was typically reached on the finer mesh in around 20
time units, as opposed to the several hundred time units required when started from
the flat-plate solution. However, one significant feature revealed by this process was
that the wall shear distribution exhibited a significant perturbation in the form of
a small spike just after the interpolation process and upstream of the ramp corner.
This perturbation then was convected downstream, growing in size and reaching its
largest amplitude as it passed through the point of minimum shear. At this stage the
perturbation was observed to either become unbounded within the backflow zone or,
upon reaching the reattachment zone, it was seen to decay while continuing to move
in the downstream direction. This behaviour appears to be that associated with a
convective instability.

In the work of Huerre & Monkewitz (1985), it was found that an absolute insta-
bility can occur with an increase in a certain controlling parameter but that this
event is generally preceded by convective instabilities. Professor P. Huerre (private
communication) had suggested that an analogous situation might apply in the present
case and consequently this issue was studied here. In the present problem, an absolute
instability develops spontaneously for α � 4.2 and the issue is whether convective
instabilities can occur for smaller values of α. To address this point, a small pulse of
the form

τw(x̂i) = τi1 + Ã exp(−µ(x̂i − x̂j )
2), (5.1)

was introduced in the wall shear for solutions which had reached an apparently steady
state. Here Ã is the initial amplitude of the disturbance, i denotes a point in the mesh
with the disturbance initially centred on x̂j and µ controls the initial spread; in most
of the computations µ =10 so that the introduced pulse was fairly compact.

When such a disturbance was introduced upstream of the separation point or
downstream of the reattachment point, it was observed to convect downstream and
decay rapidly with time. On the other hand, when the disturbance was introduced
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Figure 3. Temporal evolution of the wall shear for α = 3.5 for a disturbance introduced at
x = 0 with A = 0.1 and µ= 10 showing the occurrence of convective instability. Note that the
oscillation amplitude has been truncated in (d).

at a station x̂j within the reversed flow region, the behaviour was quite different
(but at the same time reminiscent of that observed when a coarse mesh solution
is interpolated to a smaller mesh). A typical development is shown in figure 3 for
α = 3.5, where the initial pulse is shown in figure 3(a) with µ = 10 and Ã= 0.1. After
a short time, a wave packet is evident downstream of the corner in figure 3(b) which
amplifies with time, particularly near the point of minimal shear in figure 3(c). The
disturbance reaches maximum amplitude around t ≈ 0.80 as shown in figure 3(d).
As it is convected through the reattachment zone, the amplitude of the disturbance
is substantially attenuated and subsequently decays as shown in figures 3(e) and
3(f ). The corresponding development in the streamlines is shown in figure 4. The
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Figure 4. Temporal evolution of the instantaneous streamlines for α = 3.5 for a disturbance
introduced at x = 0 with A =0.1 and µ= 10.

development of small eddies near the surface before and near the reattachment zone
is shown in detail in the insets. A similar phenomenon was seen in the triple-deck
calculations of Tutty & Cowley (1986) when flow past a vertically oscillating bump
was computed. The reattachment zone here seems to act to ‘chew up’ the disturbance
and as it convects downstream, rapid decay occurs.

The maximum amplitude of the oscillations at any downstream location, as well
as the time required for the solution to return to the steady state, are influenced by
the amplitude of the initial pulse. The maximum amplitude achieved at streamwise
locations for α = 3.5 are shown in figure 5 for various values of Ã; here the vertical line
indicates the streamwise location of the ‘steady’ reattachment point. Note that with
increasing Ã, progressively larger amplitudes are reached upstream of reattachment.
Further increases in Ã lead to oscillations that become unbounded before the
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Figure 5. Maximum amplitude of computed oscillations in wall shear for a convective
instability provoked by a pulse introduced at x0 = 0 for α = 3.5 for various amplitudes Ã.

disturbance can be processed by the reattachment zone; for example, a disturbance
with Ã= 0.5 introduced at x0 = 0 eventually achieves unbounded amplitude within
the backflow zone. A precise value of Ã for which unbounded oscillations occur
cannot be determined uniquely because the threshold value depends on where the
pulse is introduced; for example, a disturbance with Ã =0.05 introduced at x0 = −4.8
(just downstream of the separation point) also becomes unbounded. By contrast,
perturbations introduced downstream of the point of minimum wall shear have a
greatly reduced effect and, for example, a perturbation with Ã =0.5 introduced at
x0 = 4 (near the minimum shear point and in a zone of rising pressure) produced
oscillations that were barely visible and which decayed rapidly. An important point
is that in order for the disturbance to grow to unbounded amplitudes, it must be
introduced upstream of the point of minimum shear so that it has sufficient time to
develop and amplify.

In summary, convective instabilities were observed first at a critical value of α ≈ 3.2
and were provoked either through an interpolation process to a finer grid or via
introduction of a disturbance like equation (5.1). As the ramp angle is increased from
this value, the solutions become progressively more sensitive to perturbations of the
form (5.1) in the reversed flow region; the observed phenomena have been described
in some detail for α = 3.5. If the amplitude of the introduced perturbation at a
given station is too large, the instability can reach unbounded amplitudes within the
backflow zone. At a second critical value of α ≈ 3.7, the development of a spontaneous
absolute instability was observed similar to that shown in figure 2. However, in the
range 3.7 � α � 4.2, the amplitude remains bounded and a type of quasi-steady state
is reached. Finally for α greater than a third critical value of α ≈ 4.2, a spontaneous
absolute instability occurs which ultimately reaches unbounded amplitudes.

6. Theoretical considerations
Rayleigh’s inflection point theorem states that an inflection point in the streamwise

velocity profile is a necessary condition for instability. Cassel et al. (1995) found
inflection points near the corner for cases with α � 3.9 and α =3.9 was considered
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Figure 6. Instantaneous streamlines for α =4.2 showing inflection points that occur near the
corner at t = 30 and far downstream at t = 3.

to be the critical angle for the onset of instability. However, in the present study with
much refined streamwise mesh spacings, small oscillations were observed in the wall
shear for α =3.7 and the flow appears to be convectively unstable for α as low as
α = 3.2. The issue of the occurrence of inflection points in the range of numerical
solutions was studied in detail.

Generally inflection points were found in two regions. At early times and well
before td (the time at which a monotonic decrease in ∂τ (x, 0)/∂t was observed to
end), inflection points were found far downstream of the corner and outside the
recirculation zone, even for the cases at low ramp angle which ultimately reached
a stable steady state. However, as the calculation continued these points passed
downstream and out of the computational domain. Such inflection points are not
believed to be important in relation to the issue of stability.

At larger ramp angles, inflection points were also found near the corner and by
contrast these are believed to be significant. The first case where an absolute instability
produces unbounded oscillations is for α = 4.2 and here inflection points appeared
near the corner prior to td . In figure 6 the streamline patterns for α = 4.2 are shown
at t =30, which is around the time inflection points appear near the corner. Note that
the motion is unperturbed at this stage and oscillations do not appear subsequently
until around t = 50. The locations of downstream inflection points, that appeared
around t = 3 and subsequently are convected out of the domain, are also shown; by
t = 30, for example, these inflection points are no longer present.

Fjørtoft’s theorem is a further necessary condition at any streamwise location for
instability and is

∂2u

∂y2
{u(y) − u(yip)} < 0, (6.1)

where yip denotes the location of the inflection point and y is any point on the profile.
There are two possible cases, corresponding to the sign of u(yip). The situation where
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Figure 7. Velocity profiles and derivatives for α = 4.2 showing the locations of the inflection
points. (a) A station downstream of the reversed flow zone at t = 3, x = 9.5. Here u and du/dy
have been scaled pragmatically to fit on one graph. (b) A station inside the reversed flow zone
at t = 20, x = 0.3.

u(yip) > 0 occurs for the inflection points that occur early in the calculations far
downstream on the ramp. For these streamwise stations ∂2u/∂y2 > 0 at the wall and
in view of the no-slip condition at the wall, condition (6.1) is satisfied. Typical profiles
are shown in figure 7(a). It may be observed that there are two inflection points in
these downstream profiles. In figure 6, the locations of the inflection points where the
curvature changes from positive to negative (in the increasing normal direction) are
shown as squares; the inflection points where the curvature changes from negative
to positive are shown as triangles. For u(yip) < 0, which occurs in the reversed flow
region, the inflection points occur near the wall and ∂2u/∂y2 > 0 at the extremum
point as shown in figure 7(b). Thus in both cases Fjørtoft’s criterion is satisfied
indicating that an instability is possible.
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The final and most important test for instability is to determine if equation (1.2)
has solutions for the eigenvalue c which have a positive imaginary part; as shown
by Tutty & Cowley (1986) this is a necessary and sufficient condition for instability.
This test is much more difficult to apply to a time-dependent developing flow. The
integral is difficult to evaluate accurately and here the algorithm of Tutty & Cowley
(1986) was used (as corrected by Cassel 1993) which employs Padé approximations
over a portion of the integration range. Equation (B 2a) of Tutty & Cowley (1986) is
corrected here to read

I1 − I0 = eh(1 + dh)−1 + gd−1 log(1 + dh) + kh.

Tutty & Cowley (1986) obtained numerical solutions of the triple-deck equations
using the interaction law A= 0 for flow over a small bump on a surface and in these
solutions were able to find a finite range in x where ci > 0. On the other hand, in
the computations of Cassel et al. (1995) for the compression ramp, it proved difficult
to find any consistent pattern in the calculated results for ci despite many attempts.
In fact the patterns that emerged in the present computations only became evident
when the streamwise mesh was refined sufficiently.

The integral in equation (1.2) can be written in computational coordinates as

J (x, t, c) =

∫ ŷ = ymax

ŷ =0

b

{
1 − 	(ŷ)

b

∂u

∂ŷ

}
dŷ

	(ŷ)(u − c)2
− 1

c
= 0, (6.2)

where the numerical solution for u is used in this equation at any x and t . Tutty &
Cowley (1986) used a secant method to find possible eigenvalues and this method
was also attempted here. At any streamwise station for fixed t , J was first evaluated
for two different values of c and these are used to initiate the search for the zero.
The success of this method is highly dependent on the choice of initial guesses. The
method was found to be prone to diverge, even when a zero located at an upstream
station was used to initiate a search at the current streamwise station. In addition
there may be more than one eigenvalue at each station and the additional roots can
only be found by taking various initial guesses in the complex c-plane. This process
proved to be quite time consuming and frustrating because of the tendency of the
scheme to diverge. Thus an alternative process was adopted to find the roots wherein
the surface |J | was studied instead. This function is positive and the roots are defined
where |J | just touches the complex c-plane. Good initial guesses for the roots are
easily obtained by looking at a contour plot of |J |. The numerical procedure used to
find the roots is the Downhill Simplex Method (see Press et al. 1992). The method is
fairly slow and requires many more function evaluations than the secant method but
it is also quite robust. The scheme is initiated with a triangle of complex numbers
c (i.e. a simplex) and at each step in the process the triangle is deformed to move closer
to the root. Normally the point in the triangle at the highest altitude on the surface
|J | is reflected through the line joining the other two; a number of other measures
are also taken so that the algorithm can successfully negotiate flat or narrow valleys
in the surface. The termination criterion of the search was based on the predicted size
of the next step such that convergence was deemed to have occurred when this value
was less than 10−15. Note however that this search process merely locates a local
minimum in |J | and does not guarantee that a zero has been located. In practice,
an eigenvalue was considered to have been found when |J | < 10−4 at an extremum.
The roots usually occur at sharp holes in the surface and the function value there
was usually zero to machine precision. Thus there was no ambiguity as to whether a
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root had actually been found. As a further check the secant method used by Tutty &
Cowley (1986) was also used with initial guesses taken near the results obtained with
the present method; under these circumstances the secant method converged rapidly
to the same answer.

For low ramp angles such as α = 1, 2 a stable steady state was reached in the
computations and the steady profiles were examined to determine if there were any
locations where ci > 0. An extensive search of the results obtained on (801, 151) and
(1601, 151) meshes did not find any such roots. For the cases that were observed to
become unstable computationally, roots of equation (6.2) were found and it is useful
to first examine the case α =5 at times before the absolute instability is well-developed
(for this case visible small spontaneous oscillations appear at t ≈ 22 and become large
at t ≈ 32 before becoming unbounded at t ≈ 76). In figure 8, ci for the obtained
roots is plotted versus the physical streamwise coordinate at t = 20 and t = 26; the
wall shear is also plotted for reference. At t = 20, the wall shear is smooth except
for a small distortion that has developed just upstream of x = 2 and, as shown in
figure 8(a), roots indicating instability have been found near the ramp corner. The
solid lines in this graph denote actual roots such that |J | < 10−4 and are labelled 1, 2a

and 2b. The dotted lines to either side of these curves are points where the simplex
method has converged but only to a local minimum of |J |; note that the solid and
dotted lines appear to be continuous at their juncture. At a subsequent time t = 26,

shown in figure 8(b), the wall shear has developed a smooth oscillation downstream
of the point of minimum shear and a new curve labelled 3 has appeared. Note that
curves 1, 2a and 2b are still present but have moved upward somewhat, suggesting
that somewhat larger growth rates can occur at this later time. The growth rates
associated with curve 3 are lower than for the other curves but it is believed that this
curve is the precursor of an absolute instability, whereas the others are indicative of
convective instabilities. Curve 3 does not quite reach the axis since the integral (5.1)
is improper when c is real. The curves shown in figure 8 are all located near the
ramp corner whereas the development of growing oscillations eventually occurs near
and downstream of the point of minimum shear. Roots were found near the point of
minimum shear and these are also shown in figure 8(b) as single points; in general
no consistent pattern was observed for the roots in this zone, although the pattern
suggests the presence of multi-frequency oscillations as observed in the computations.
In figure 9 contour plots of the surface |J (c)| are shown at the three streamwise
locations indicated in figure 8(b) by broken vertical lines. These plots show the holes
(depicted as dark) where a root occurs. The labelling of the roots corresponds to that
in figure 8(b).

In this study the occurrence of a spontaneous absolute instability was first observed
for α = 3.7 and it is of interest to try to correlate the patterns seen in figure 8 and 9
with those observed in the computations. For α � 2 there are no roots of equation
(6.2). For α = 3 some roots were observed but they are sparsely scattered and do not
form continuous curves as in figure 8(a); in addition the growth rates are small with
ci < 0.1. For α =3.2, partial forms of curves 1 and 2a, b are present and by α = 3.4
these curves are complete. The computational results suggested that α = 3.0 is stable;
on the other hand for α = 3.2 the flow exhibits a weak convective instability that
grows in strength as α increases to 3.4. Thus it appears that curves 1 and 2a, b are
associated with the observed convective instability.

For α =3.6, a portion of curve 3 starts to appear in the vicinity of the eventual
maximum and by α = 3.7 (at a time just prior to the onset of absolute instability
and when small oscillations are present) the evolution is essentially complete and
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Figure 8. Imaginary part of the roots of J (c) = 0 together with the wall shear for α = 5.
(a) t = 20, (b) t = 26.

qualitatively similar to that shown in figure 8(b), with curve 3 extending almost to the
axis ci =0. For these reasons, it is believed that the evolution of curve 3 is associated
with the onset of absolute instability. The case α =3.6 reaches an apparently steady
state but the ‘steady state’ is characterized by small oscillations in the wall shear
trough that require a long time to develop; this case is believed to be on the verge of
producing absolute instability. It may be noted that the growth rates associated with
curves 1 and 2a, b are larger than those associated with curve 3 and this is consistent
with computational experience. The convective instabilities were observed to grow
fairly rapidly whereas a spontaneous absolute instability grows initially slowly and
then plateaus for a time before becoming unbounded.

It is of interest to attempt to compare the actual growth of the disturbances with
the predicted growth rates of the form δ exp(kcit), where k = 2π/λ is the wavenumber
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and λ is the wavelength with ci estimated from figure 8(a). For α =5, oscillations were
first visible in the wall shear near the minimum for t ≈ 22 and an estimate of λ= 0.286
was made at x =4; an estimate of the maximum value of ci = 0.12 was obtained at
this location and time from a graph similar to figure 8(a). These considerations
predict a growth of the disturbance of the form δ exp(2.74t). The actual growth
of the disturbance is shown in figure 10, where the maximum amplitude is plotted
versus time. A curve fit to the early results produced 2.7 × 10−10 exp(0.744t). This, of



Instabilities in supersonic compression ramp flow 329

0

5

10

15

20

25

30

35

40

20 30 40 50 60 70 80

A
m

pl
it

ud
e

Time

2.7 × 10–10  exp(0.744t)
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course, is not close agreement with the predicted growth rates but it is at least of
comparable magnitude. Refining the comparison is difficult because the wavelengths
of the disturbance were observed to decrease as the disturbance grew. The subsequent
development of the disturbance in figure 10 shows a complicated plateau behaviour as
it sloshes back and forth in the wall shear trough; eventually unbounded oscillations
occur around t =76.

7. Conclusions
The evolution of an absolute instability in supersonic boundary-layer flow over

a compression ramp has been documented and connected with the computed
eigenvalues of the relation given by Tutty & Cowley (1986), that is a necessary and
sufficient condition for instability. The evolution of this instability and a consistent
pattern in the calculated eigenvalues was evident only when the streamwise mesh was
sufficiently refined. As the ramp angle is increased from zero through to a critical
value of around 3.2, the lack of eigenvalues and the computed solutions, including
those with reversed flow, show that the two-dimensional boundary layer flow is steady
and stable. There is then a parameter range (3.2 � α � 3.7) where the flow apparently
reaches a stable steady state but, in fact, the motion is convectively unstable in the
reversed flow region near the ramp corner. If a disturbance of sufficiently large
amplitude is introduced in the backflow zone, an absolute instability can occur in this
range. As the ramp angle is increased to higher values, at around a scaled value of
α 	 3.7, a spontaneous absolute instability occurs with bounded amplitude; for α � 4.2
the amplitude eventually becomes unbounded. The present results are in agreement
with the work of Huerre & Monkewitz (1985) which suggests that as the controlling
parameter is increased a region of convective instability precedes that where absolute
instability occurs.

The authors would like to acknowledge helpful discussions with Dr S. J. Cowley
and Professor P. Huerre.
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